Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis.

نویسندگان

  • Fabien Jammes
  • Philippe Lecomte
  • Janice de Almeida-Engler
  • Frédérique Bitton
  • Marie-Laure Martin-Magniette
  • Jean Pierre Renou
  • Pierre Abad
  • Bruno Favery
چکیده

During a compatible interaction, root-knot nematodes (Meloidogyne spp.) induce the redifferentiation of root cells into multinucleate nematode feeding cells (giant cells). Hyperplasia and hypertrophy of the surrounding cells leads to the formation of a root gall. We investigated the plant response to root-knot nematodes by carrying out a global analysis of gene expression during gall formation in Arabidopsis, using giant cell-enriched root tissues. Among 22 089 genes monitored with the complete Arabidopsis transcriptome microarray gene-specific tag, we identified 3373 genes that display significant differential expression between uninfected root tissues and galls at different developmental stages. Quantitative PCR analysis and the use of promoter GUS fusions confirmed the changes in mRNA levels observed in our microarray analysis. We showed that a comparable number of genes were found to be up- and downregulated, indicating that gene downregulation might be essential to allow proper gall formation. Moreover, many genes belonging to the same family are differently regulated in feeding cells. This genome-wide overview of gene expression during plant-nematode interaction provides new insights into nematode feeding-cell formation, and highlights that the suppression of plant defence is associated with nematode feeding-site development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes.

When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant-nematode interactions remain unexplored. Here, we characterized the role of a group of cell wa...

متن کامل

1982 Engineering durable root-knot nematode resistance in crops by RNAi silencing of a root-knot nematode parasitism gene

Secreted proteins coded by parasitism genes expressed in esophageal gland cells mediate infection and parasitism of plants by root-knot nematodes. An essential parasitism gene, designated as 16D10, encodes a conserved root-knot nematode secretory peptide that stimulates root growth and functions as a ligand for a plant transcription factor. Plants were engineered to silence this parasitism gene...

متن کامل

Effect of organic amendment on organic metabolites in root knot nematode (Meloidogyne Incognita) infested spinach

The Nematodes are roundworms that are found in every environment of the earth. While some species are harmful parasites, others play a vital role in nutrient cycle and medical research. Nematode infestation in the fields is poly-specific; however, depending on the agro-climatic conditions, one or two species are dominant over the rest. The present studies attempts to observe and control the roo...

متن کامل

Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance

The root-knot nematode (RKN), Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi) has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsR...

متن کامل

Papaya Dieback in Malaysia: A StepTowards A New Insight of Disease Resistance

A recently published article describing the draft genome of Erwiniamallotivora BT-Mardi (1), the causal pathogen of papaya dieback infection in Peninsular Malaysia, hassignificant potential to overcome and reduce the effect of this vulnerable crop (2). The authors found that the draft genome sequenceis approximately 4824 kbp and the G+C content of the genomewas 52-54%, which is very similarto t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 44 3  شماره 

صفحات  -

تاریخ انتشار 2005